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Summary 

The goal of the Hyper-X program is to demons’trate and validate technology for design and performance predic- 
tions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accom- 
plishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key 
enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a 
successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a 
controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to 
evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a 
Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the 
Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of 
simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test 
requirements. 

Introduction 

Hypersonic airbreathing propulsion is a key technology for sustained hypersonic cruise and improving the per- 
formance of space launch vehicles. Airbreathing supersonic-combustion ramjet (scramjet) engines could improve 
mission effectiveness by reducing on board propellant load in favor of payload or increasing operational flexibility. 
To mature this technology for application in the longer term, NASA has initiated the Hyper-X program (McClinton 
et. a1 1997). The goal of the Hyper-X program is to demonstrate and validate technology for design and 
performance predictions of hypersonic aircraft with an airframe-integrated scramjet propulsion system. 
Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. 
A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to 
enable a successful booster separation, to achieve and maintain the design condition during the engine test, and to 
provide a controlled descent. This paper presents a description of design challenges from a flight controls 
perspective and a description of the control law architectures with performance and robustness analyses. 

Hyper-X Program Overview 

The Hyper-X program is an integrated government-industry effort to demonstrate and validate the technology, the 
experimental techniques, and design methods for hypersonic aircraft with an airframe-integrated scramjet propulsion 
system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic 
aircraft. The primary objective of the flight tests is to provide data required to advance key hypersonic technology 
readiness levels from the laboratory to the flight environment level (McClinton et. a1 1997). Three autonomous, 
expendable test vehicles will fly at Mach 7, 7, and 10. These vehicles, referred to as Hyper-X Research Vehicles 
(HXRV), are 12 feet long, five feet wide, and weight approximately 3000 lbs. (Figure 1). Each HXRV will have a 
single airframe-integrated scramjet, optimized for its specific test flight condition. The flights will be conducted in 
the Western Test Range off the California coast. 

Dryden B-52 aircraft, the HXRV will be boosted to a predetermined stage separation point using a modified Orbital 
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The nominal fight sequence for the Mach 7 flight is illustrated in Figure 2. Following drop from the NASA 
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Pegasus booster. The HXRV will then separate from the booster and start a controlled, pre-programmed engine 
flight test sequence. The engine test sequence consists of a 5 second tare with power-off, the engine power-on test 
lasting 5-14 seconds, a 5 second power-off post-test tare, and a 15 second parameter identification maneuver 
(Morelli 1997). The desired test condition for the first flight is Mach 7, a dynamic pressure of 1000 psf, 0 degrees 
sideslip, and 2 degrees angle of attack. After the test sequence, the vehicle will fly a controlled unpowered descent 
trajectory. During the descent, short-duration pre-programmed test inputs, including steps and frequency sweeps, 
will be super-imposed on the control surface commands to aid in the estimation of aerodynamic and flight control 
parameters. Figure 3 shows artist conceptions of four phases of the Hyper-X flight sequence - captive carry on the 
NASA B-52, boost to engine test condition, separation from the booster, and engine test. 

An industry team, consisting of Microcraft, GASL, and Boeing, won the contract to develop the research vehicle, 
the research vehicle-to-booster adapter, and the stage separation mechanism. Microcraft will build the vehicles and 
provide overall program management. GASL, Inc. is the scramjet and fuel system detail designer and builder. 
Boeing North American is providing guidance and control system software, and simulations; aero/thermal/structural 
design and analysis; and thermal protection system design and fabrication. Orbital Sciences Corp. will build the 
Hyper-X Launch Vehicle (HXLV), that will boost the Hyper-X Research Vehicles to the engine test conditions. In 
addition, Orbital has responsibility for booster control laws, integration with the HXRV, and launch test support. 

Flight Control Laws 

A key enabling technology for this flight test is flight controls. Closed-loop flight control is required to stabilize 
the HXRV and achieve the engine test condition after separation from the HXLV, then to maintain this condition 
during the engine test sequence. The control laws are required to maintain the desired angle of attack and sideslip to 
within ~t 0.5 degrees during the entire engine test sequence. After the engine test sequence, the control laws follow 
steering commands from the guidance system to maintain a desired descent trajectory. Before contract award, 
NASA developed preliminary flight control laws for the Hyper-X Research Vehicle to evaluate the feasibility of the 
proposed scramjet test sequence and descent trajectory (Lallman et al. 1997). After contract award, a Boeing/NASA 
partnership worked to develop and refine the current control laws. 

The flight control function is accomplished by processing guidance commands and sensor feedbacks to produce 
aerodynamic surface commands. The aerodynamic control surfaces available on the HXRV are: symmetric and 
differential deflection of the all-moving wings (AMW), and twin rudders. Longitudinal and lateral-directional 
control laws were developed for angle of attack (AOA) and bank angle control, respectively (See Figure 4). The 
control laws were designed in the continuous domain using classical linear control design techniques (Ogata 1970). 
The design model included rigid-body modes, second-order actuation models, and filter dynamics. Lead-lag filters 
were included to improve stability margins. Attenuation at the lowest structural frequency (42 Hz) is greater than 40 
dB, therefore no structural filters were required. The current design envelope is from the engine test condition at 
Mach 7 down to Mach 0.8. Continuous domain dynamics were discretized using a Tustin transformation at 100 Hz. 
The control laws were primarily designed using Matlab/ Simulink". FORTRAN Code was generated for nonlinear 
batch simulation. After linear analyses were completed, a full nonlinear simulation analysis of the HXRV was 
performed. Nonlinear simulation allowed designers to uncover any limitations inherent in the linear analysis and to 
study effects of variations in key parameters, such as center of gravity location and dynamic pressure. The flight 
control laws will be autocoded into C from the Simulink block diagrams for flight hardware implementation. 

are discussed in more detail in Selmon et al. 1998. 

Longitudinal Control Law 
The longitudinal control law has a classical loop structure. This control law is designed to maintain a desired 

angle of attack during the engine test sequence, then switches to maintaining a desired load factor (Nz) during the 
descent. This is accomplished by selective augmentation of the HXRV dynamics. The angle of attack of HXRV is 
commanded to the desired values by means of symmetric deflection of the all-moving wing. Estimated angle of 
attack and measured pitch rate feedbacks are used to provide longitudinal stability. The angle of attack is 
commanded to 2 degrees during the test and varied according to guidance commands (nominally 8 to 14 degrees) for 
controlled descent and flight termination. 

A brief discussion of the longitudinal and lateral-directional control law architectures follows. The control laws 

* Matlab and Simulink are registered trademarks of The Mathworks, Inc. 
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A diagram of the longitudinal control law is given in Figure 5. During the engine test, input to the longitudinal 
control law is commanded angle of attack. During descent, input is commanded load factor. In the Nz command 
block, the commanded load factor is converted into a commanded angle of attack. The estimated AOA is subtracted 
from the commanded AOA to form an AOA error. This signal is multiplied by gains, then integrated. The 
integrator structure is used to improve angle of attack regulation. Measured pitch rate is multiplied by feedback 
gains. The opening of the inlet cowl door and the powering of the engine cause pitching moments and normal force 
disturbances that are compensated by feedfoward commands to adjust the control surface commands. The 
symmetric all-moving wing command is the sum of integrated AOA error, pitch rate, and disturbance compensation 
signals. Gains are scheduled with angle of attack and Mach number. The surface commands are compensated for 
changes in dynamic pressure. 

Lateral-Directional Control Law 
The lateral-directional control law has a classical loop structure. The control law is designed to maintain a 

desired bank angle and suppress undesirable directional motions. The bank angle of the HXRV is commanded to 
desired values by differential deflection of the all-moving wing. The commanded bank angle is zero during the 
engine test phase, but may be nonzero during the descent phase. Directional motions are controlled by deflection of 
the rudders. In the lateral channel, measured roll rate and bank angle feedbacks are used to augment lateral 
dynamics. In the directional channel, gravity compensated yaw rate is fed back to augment directional stability. 

A diagram of the lateral-directional control law is given in Figure 6. Input to the lateral channel is commanded 
bank angle. Lateral channel feedbacks are bank angle and roll rate. Commanded bank angle is differenced with 
measured bank angle and this error is multiplied by the bank angle gain. This gain is a function of angle of attack 
and Mach number. Bank angle error is passed through an integrator structure to improve bank angle regulation. 
Measured roll rate is passed through a lead-lag filter and multiplied by feedback gains that are a function of angle of 
attack and Mach number. The differential all-moving wing command is the sum of the roll rate, bank angle error, 
and integrated bank angle error signals. Yaw due to aileron is reduced by providing an aileron-rudder-interconnect 
(ARI). The ARI gain is a function of angle of attack and Mach number. 

The directional channel feedback is gravity compensated yaw rate. Sideslip feedback is not required because 
there is sufficient aerodynamic directional stability for all flight phases. The yaw rate feedback is passed through a 
lead-lag filter then multiplied by gains that are scheduled with angle of attack and Mach. The rudder command is 
the sum of this signal and the ARI command from the lateral channel. The surface commands are compensated for 
changes in dynamic pressure. 

Angle-of-Attack EstirnatiodMeasurement 

Control of angle of attack (AOA) requires an accurate measure of AOA. Conventional AOA measurement 
devices cannot be used at the flight test conditions of the HXRV due to severe aerodynamic heating. Several 
approaches to determining an accurate measure of AOA have been considered. Four of these approaches are 
discussed in the following. 

Aerodynamic Model Approach. 

and predicted aerodynamic characteristics (wind-tunnel data, CFD, etc.) of the HXRV and atmospheric and flight 
condition data. Angle of attack rate is calculated from point-mass kinematics and is primarily a function of pitch 
rate. This AOA estimation approach combines rapid pitching motion measurements with long-term vertical 
acceleration measurements to produce an estimated AOA. This estimator contains a model of the lifting characteris- 
tics of HXRV that has cowl (inlet) door and propulsion effects. This approach can be sensitive to error in the 
derived aerodynamic parameters used to convert the normal acceleration to angle of attack. 

Flush Air Data System Approach. 
The Flush Air Data System (FADS) consists of pressure ports located on the upper and lower surface of the 

HXRV forebody. Preliminary FADS pressure port locations are given in Figure 7. Although all nine FADS ports 
are shown, only ports 1 through 4 are used in the flight controls to estimate angle of attack. An estimate of angle of 
attack is determined as a function of the pressure differential between these pressure ports, dynamic pressure, and 
Mach number. In this approach, the FADS angle of attack estimate would replace the aero model-based angle of 
attack estimate going into the complimentary filter. The angle of attack rate estimate is the same as in the aero 

In this approach, the angle of attack of the HXRV is estimated from available measured motion data, the physical 
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model-based approach. This approach is sensitive to errors in the functional relationship between angle of attack 
and differential pressure. 

Inertial Measurement Unit Approach. 

HXRV. Angle of attack is defined as the angle between the vehicle body x-axis and the direction of the freestream 
airmass velocity upstream of the vehicle. If airmass motion relative to the earth is ignored, then angle of attack can 
be determined directly from inertial velocities. Angle of attack is calculated to be arctan(w/u), where w=inertial 
plunge velocity and u= inertial forward velocity. In this approach, the IMU angle of attack estimate would replace 
the aero model-based angle of attack estimate going into the complimentary filter. The angle of attack rate estimate 
is the same as in the aero model-based approach. This approach is sensitive to atmospheric winds. 

Complimentary Filter Approach 
In this approach (Lallman et al. 1997), a complimentary filter is designed to combine signals with different 

content and accuracy characteristics into a composite signal with the “best” characteristics of each input signal (See 
Figure 8). The filter tracks a low frequency input (angle of attack) for frequencies less than 1/T and integrates a 
high frequency input (angle of attack rate) for frequencies greater than 1/T. The complimentary filter combines the 
two inputs to form a composite angle of attack estimate. 

The Aerodynamic Model Approach is not being used because of uncertainty in the aero model data. This 
uncertainty would not allow calculation of the AOA to the required accuracy. The IMU Approach has been chosen 
as the primary source for AOA because of its close tolerances and high bandwidth. The high bandwidth of this 
signal eliminates the need for a Complimentary Filter Approach. The two approaches currently being considered are 
the Inertial Measurement Unit Approach and a Blended Inertial Measurement Unit / FADS Approach. In the 
Blended approach, FADS information would be used to correct the Inertial Measurement AOA for steady-state 
errors. 

The Inertial Measurement Unit (IMU) provides accurate measurements of the inertial velocities and attitude of the 

Flight Control Law Evaluation 

Simulation analysis of the separation of the Hyper-X Research Vehicle (HXRV) from the Hyper-X Launch 
Vehicle (HXLV) has been performed extensively in order to maximize the chances of mission success and minimize 
risk to the Research Vehicle. Numerous parametria and Monte Carlo analyses have been conducted and have 
resulted in a separation controls/sequencing strategy that satisfies the desired objectives. So far, any required 
changes are limited to the separation control mode and do not require any modification to the basic free flight 
control laws. Much of the analysis had been focussed on selecting a preferred separation scenario. The choice was 
between a fixed adapter scheme and a more elaborate mechanized two-piece adapter approach. The later approach 
attempted to eliminate the possibility of re-contact, but was ultimately deemed to be too risky and uncertain. The 
fixed adapter approach (Figure 9) was adopted as the preferred scenario and the separation analysis effort focussed 
on defining a viable fixed adapter separation strategy with sufficient robustness to handle uncertainties. The 
separation control strategy consists of outer loop and inner loop closure time triggers as well as an initial open-loop 
elevon command schedule. There is also a requirement for the HXLV to command a maximum nose down 
maneuver at separation to provide additional clearance margin. Final details of the separation strategy will be 
determined upon completion of final Monte Carlo analysis. 

Current assessments of flight trajectories and stability margins for the control laws demonstrate that the HXRV 
meets the flight test requirements. For example, Figure 10 presents simulated symmetric AMW position and angle 
of attack as a function of time, from stage separation to cowl closure. This simulation uses an example engine fuel 
sequence to demonstrate control law performance. Initially, the HXRV is at the design separation condition of zero 
AOA. The symmetric AMW is set to approximately 9 degrees trailing-edge down to balance aerodynamic pitching 
moments. During the first 0.5 second after separation, the HXRV is propelled forward from the booster-adapter by 
gas-charged pistons, the control system activates and moves the symmetric AMW to 6 degrees to re-establish pitch 
trim. The control system commands 2 degrees AOA from this time until the end of data shown. The cowl door 
opens between 2.5 and 3 seconds. The symmetric AMW trim angle decreases to balance a nose-down pitching 
moment produced by airflow through the engine. The HXRV is held at a steady 2 degrees AOA for 5 seconds while 
engine-off tare data is collected. At 7.5 seconds after separation, silane ignitor and hydrogen fuel flows are initiated. 
The ignitor turns off at 8 seconds, while the fuel continues to ramp up to full power at 9 seconds. The operating 
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engine causes a large nose-down pitching moment that is balanced by a reduction of elevator trim position to nearly 
zero. The engine is maintained at full power ( design fuel flow rate ) until 15.5 seconds in this simulation. 

At 15.5 seconds after separation, the fuel flow is quickly turned off. The sudden loss of nose-down pitching 
moment from the engine causes a nose-up motion of the HXRV (increased AOA). Rapid control motions limit the 
pitch excursion and return the HXRV to the commanded AOA. The HXRV holds steady for another 5 second tare 
period. A 15 second period of programmed control surface motions is performed to generate data for post-test 
parameter identification (PID). The control motions are designed to highlight short period parameters with an 
emphasis on variations in drag forces caused by trim changes of the symmetric AMW. This drag data is needed to 
accurately characterize the thrusting performance of the engine. This simulation predicts that the control system 
properly stabilizes the HXRV for the engine test sequence. The symmetric Ah4W excursions are within reasonable 
limits. The HXRV response to commands and disturbances is acceptable for the flight test. 

Single-loop stability analysis was done at the HXRV inputs. The gain and phase margins were obtained by 
breaking an individual loop while leaving the remaining loops closed. The analysis was done by breaking the 
individual physical control input commands to the actuators (symmetric and differential all-moving wings, and 
rudder). Gain and phase margins at nine nominal flight conditions are given in Tables 1 and 2. As these tables 
show, the gain and phase margins are much better than the design guidelines of 2 6 dB and -I- 45 degrees, 
respectively. These margins exclude the very low frequency range of the spiral mode. The gain and phase margins 
evaluated at an additional 32 off-nominal flight conditions were also within the guidelines. 

Concluding Remarks 

This paper has presented a description of the control law architectures with performance and robustness analyses 
for the Hyper-X Research Vehicle. The Hyper-X needs closed-loop flight control to enable a successful stage 
separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. 
Before contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility 
of the proposed scramjet test sequence and descent trajectory. After contract award, a BoeingNASA partnership 
worked to develop the current control laws. Longitudinal and lateral-directional control laws were developed for 
angle of attack and bank angle control, respectively. The control laws were designed in the continuous domain 
using classical linear control design techniques. Assessments of flight trajectories and stability margins for these 
control laws demonstrate that the vehicle meets the flight test requirements. Additional analyses of performance and 
robustness characteristics will be performed after release of final aerodynamic and actuation model updates. The 
first flight test at Mach 7 is planned for early 2000. 
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Figure 2. Hyper-X flight trajectory. 
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Figure 8. Angle of attack estimator using a first-order complimentary filter. 
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Figure 10. Symmetric all-moving wing and angle of attack time responses. 
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Table 1. Longitudinal Gain and Phase Margins at Nominal Flight Conditions 

(.) Cowl Door OpenEngine On 

Table 2. Lateral-Directional Gain and Phase Margins at Nominal Flight Conditions 
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